
Security Engineering and Modelling of Set-top Boxes
Jose Fran. Ruiz, Andre Rein
Fraunhofer Institute for Secure

Information Technology
Darmstadt, Germany

{jose.ruiz,
andre.rein}@sit.fraunhofer.de

Marcos Arjona, Antonio Maña
Computer Science Department

University of Malaga
Malaga, Spain

{marcos,amg}@lcc.uma.es

Antoine Monsifrot, Michel Morvan
Technicolor, Security & Content

Protection Labs
Cesson Sévigné, France

{antoine.monsifrot,
Michel.Morvan}@technicolor.com

Abstract— This paper presents a security engineering process for
the development of secure systems focusing on the specification
and development of the Set-top Boxes. The paper describes the
Set-top Box characteristics and functionalities and, using the
process and its secure artefacts, models what we call a Domain
Security Metamodel that defines all the security properties of
that domain and implements them using Security Building
Blocks. This security artefact can be used by system engineers
when modelling their system model in order to fulfil its security
requirements and, as a result, create a secure system that has
security naturally integrated in its architecture and functionality.

Keywords— security engineering; security building blocks;
security modelling

I. INTRODUCTION

A Set-top Box (STB) is a device that extends the capability
of a television, allowing it to become a user interface for
PayTV, Video on Demand, internet navigation, buy and load
applications from an app store, receive streaming from several
events and use it as a multimedia system (photos, personal
movies, etc.). Although it started with minimal capabilities and
limitations, the functionalities of the STB has evolved and
transformed from a digital television decoding artefact to an
internet multimedia system, which actually is more like a
personal computer than a television artefact.

With the evolution and expansion of the functionalities over
Internet the threats of the STB has grown exponentially. There
exist now data that is streamed over the Internet, the users can
buy applications and install them in the STB, store critical and
confidential information in the system, etc. The development of
this device is a very complex task due to several reasons. First,
STBs are embedded devices with real time constraints and their
development must be cheap due to market pressure. Second,
the STBs provide new features such as Internet browser, games
or the possibility to buy movies. These functionalities use very
different constraints from a security point of view. The
distribution of paying movies, as we commented before,
requires some special security features in the system because it
works with copyright protected data that A content leakage
exposes business of content owners and distributors
(broadcasters or service providers). For that reason, all the
critical assets must be protected and the possible security
threats secured with domain-specific security properties. For
example, as Jon Brodkin [1] explains, a web browser
potentially introduces a lot of vulnerabilities in the system.

Due to all these special characteristics and functionalities,
we have to define some trade-off between security, features,
cost and performance. In this context, it is important that
system engineers and architects understand the security risks of
the system in order to accept the implementation of the
appropriate protections. Building strong security should
therefore rely on a structured and rigorous security process
through the development lifecycle.

We present in this paper a security engineering process for
the development of secure systems and a security artefact
created using this process that provides domain-specific
security properties of the STBs along with the description of its
constraints, characteristics, usual threats, attacks, assumptions,
etc. The process allows to develop and to use security solutions
in order to satisfy the security requirements of a target domain.
It provides a framework composed of different security
artefacts and processes that, each of them, aim at different
objectives with different responsibilities. Its main objective is
to help developers and engineers in the management of security
aspects and its use in System Models. Due to size limits we
describe briefly the security engineering process and the rest of
its elements. The approach and work presented have been
developed in the SecFutur project [2]. The reader can find
more information of this process and the description and
composition of the artefacts in [3]. The security aspects are
defined as Domain Security Metamodels, which contain the
information and security properties of specific domains (smart
metering, forest control systems, Set-top Box systems, etc.).

We focus in this paper in the description of the DSM
created for the Set-top Box domain presented in Section 2 and
its security properties. After describing the DSM we focus in a
particular security property: “Secure Data Storage”. We present
an extract of the DSM containing this security property and
describe in depth its elements, the Security Building Block
Solution, the elements of the system where it can be applied,
etc.

II. SET-TOP BOX DOMAIN DESCRIPTION

The STB is a mass-market consumer device that is
connected to the user’s television and controlled by the user
through a simple user interface. However, the STB
functionalities have changed since its first version.

In the early days, its role was limited to receiving protected
television signals, decrypting and decoding them to deliver a

2012 ASE International Conference on Social Informatics (SocialInformatics 2012) / 2012 ASE International Conference on Cyber

Security (CyberSecurity 2012) / 2012 ASE International Conference on BioMedical Computing

978-0-7695-4938-5/12 $26.00 © 2012 IEEE

DOI 10.1109/SocialInformatics.2012.97

668

2012 ASE/IEEE International Conference on BioMedical Computing

978-0-7695-4938-5/12 $26.00 © 2012 IEEE

DOI 10.1109/BioMedCom.2012.25

113

video signal to be displayed on the television. The emergence
of Internet-based services has allowed service providers to
propose various additional functionalities such as video on
demand, catch-up television, Internet browsing, applications
store, subscriber account management, customer private data
(e.g., family pictures), etc. It also led to the introduction of
Digital Rights Management (DRM) systems.

These changes have completely modified the security
protection needs. In previous generations, STBs used dedicated
processors and operating systems. Their security was mostly
edicted by the Conditional Access vendors (CAS) and mainly
based on the use of smartcards. These devices operated in a
closed and controlled environment, which facilitate its security
requirements and needs. With the recent integration of an IP
connection, the STB architecture evolved towards a more
common architecture using processors with standard cores and
embedded Linux as operating system. Functionally, a modern
STB is equivalent to a standard computer.

Common hacker knowledge now applies to STB.
Moreover, STBs rarely implement security mechanisms, except
the mandatory media access control and digital rights
management ones: there are no antivirus, no firewall, no
intrusion detection system and middleware runs with root
privilege.

These security flaws make the STB vulnerable to many
security attacks. The security of the STBs has become more
complex and it has increased the need of a rigorous security
engineering process.

A. Functional description
We focus in this paper in the following five main services

provided by a STB:

� Decrypting and decoding broadcasted content coming
from satellite. The STB is plugged to a satellite dish
that allows receiving protected content. A control word
system that changes several times per minute is used to
scramble the content. The control words arrive
ciphered with the content and are deciphered by a
smartcard contained in the STB. All the security of this
process is under the responsibility of the Control
Access System (CAS).

� Browsing Internet.

� Playing DRM content coming from Over The Top
(OTT) services.

� Buying and executing of applications from an
Applications Store (appstore).

� Storing personal content (video or photo).

B. Security problem
The security of the STB is very important for several

reasons. One example is the PayTV distribution. A broadcaster
wants to supply early a new movie that it is still being played in
the movie theatres. Thus, the content has a very high value and
the protections of the subscription and distribution
functionalities are very important. If a malicious user access
the movie clear data stored in the STB she can stream it over

the internet or save it for illegal distribution. Another example
is the maintenance of the STB. If a PC company sells a
computer its security is not the company’s problem because it
is not anymore the owner of the machine. If the customer
installs a malicious application on her computer this is her own
responsibility. On the contrary, the broadcaster buys the STBs
to the manufacturer and rents them to the users. If a user
installs a malicious application on a STB the responsibility
scheme is very different from the PC one. First, the provider
has to fix the problem and, second, she may have to do this
quickly because the user could not able to buy more content or
her critical information could be sent to malicious users.

Security is very important in the STB systems but, as we
have previously said, it becomes very complex due to all the
different characteristics, functionalities and assets. All these
applications have to share the same RAM and the same
processor, which increases the security threats of the system
and the risk of unauthorized accesses. Moreover, the STB is an
embedded device so we have to provide all these security
solutions with very limited resources and a very small impact
on the performance of the system.

The addition of an appstore is a very challenging task.
From a security point of view, using an appstore in the STB
allows unknown users to install unknown software developed
by unknown developers. Indeed, the most frightened
applications are the ones that are developed by targeting the
system and the applications developed by bad developers that
create security flaws allowing exploits on the system.

Furthermore, actually there exist no good techniques for
detecting malicious applications. Most techniques rely on
signature systems. Unfortunately, we know an application is
malicious when it is too late. Signature systems only reduce the
access range of malicious applications. As Oberheide and
Miller [4] show in their Bouncer study, the current means
implemented are insufficient.

III. SECURITY ENGINEERING PROCESS AND SECURITY
ARTEFACTS

The main objective of the SecFutur Security Engineering
Process is to help developers and engineers in the treatment of
security aspects and in the use of security elements in order to
enhance system models and fulfil their security requirements.
The Security Engineering Process integrates security solutions
into a framework and can be incorporated into an existing
design process with a minimum amount of changes. The
framework covers all the different phases of the life cycle such
as the creation of the security artefacts, security building blocks
and the creation of system models using security properties.

A. Security Engineering Process Architecture
In order to describe and use the security properties of the

domains we have created three different layers that describe the
language used to define the security properties, the security
properties themselves and their application in the models of the
use cases. Due to size restrictions we cannot explain in depth
the different layers, creation processes and elements of the
security engineering process. We just focus here in the creation
of a DSM and the description of one used to model the security
properties of the Set-top Box domain. The reader can find more

669114

information about the security engineering process in [4]. Each
layer is built on the previous one and defines a more specific
model of security. Figure 1 shows the dependencies between
the different layers. They are organized top to down from the
more abstract one (the Core Security Metamodel) to the more
specific one (the System Model of the target scenario). It is
important to clarify that we use the term domain to refer to
specific application domains (e.g. wireless sensor networks
embedded systems, smart metering, ad-hoc networks, etc.)
while in the field of modelling it is normally associated with
the notion of Domain Specific Language (DSL) and focused on
code generation.

Figure 1. SecFutur Layers

The first layer is the Core Security Metamodel (CSM). It is
based on the UML Standard Metamodel and is materialized as
a metamodel that contains elements (in the form of UML
metaclasses) and relations to represent relevant security
concepts such as properties, requirements, threats, attacks,
assumptions, domains, actors, tests, etc. It is important to note
that this layer deals only with concepts (e.g. “attack”) and not
with instances of these concepts (e.g. “illegal memory access).
Thus, this layer is domain-independent and defines the
common language (rules, relations, etc.) used to express
security-related information. The central element of the CSM is
the concept of security property. In fact, one of the main
objectives of the CSM is to serve as a basis for the definition
and description of domain-specific security properties.

Figure 2 shows an extract of the CSM. The attributes of the
elements have been hidden in order to improve its visibility.
Due to the complexity of the metamodel, its attributes and
relations, we have divided the CSM into six different expertise
sub-metamodels. Each one focuses in a specific field, allowing
users with experience and knowledge in that field to fulfil those
classes and use them in the creation of DSMs. The different
expertise aspects of the CSM and their descriptions are:

� Properties Model: focuses on the definition of the
security property and its characteristics.

� Requirements Model: describes the relations between a
security property, the security requirement it fulfils and
the solution that implements it.

� Threat Model: defines and describes the security
threats of the security properties, the different attacks

that implement the threat and the attackers that execute
them.

� Domain Model: describes the domain of the DSM, the
elements of the real world that can be found in the
domain and the list of known actors or roles of the
domain.

� Assurance Model: defines the assurance and
certification of the security property. It is used to check
if the property and its structure are valid and secure.

� Validation & Verification Model: describes the
validation and verification mechanisms of a security
property.

The specification of the security knowledge for a specific
domain is done in the second layer of the framework by
creating a Domain Security Metamodel (DSM). DSMs are
created using as basis the CSM, allowing experts to capture
security knowledge (properties, solutions, threats, etc.) in
compliance with the environment of their applications
(company policies, standards, etc.) for a specific domain. The
DSMs are instances of the CSM in a specific domain. System
engineers use the DSMs in order to enhance with security their
system models. For that reason, DSMs are created by security
experts who, after analysing a domain and thanks to their
expertise and knowledge of that domain, can model the
different domain-specific security properties and its attributes.
The solutions (implementations) of the security properties are
captured in the form of what we call Security Building Blocks
(SBBs). They provide a hardware and/or software solution that
is developed by a SBB expert. The DSM expert selects one for
each security solution according to its characteristics,
functionality, domain, etc. This process is out of scope of the
paper so we just describe it briefly.

Figure 3 presents an extract of a DSM. The main elements
are the domain, which describes the domain of the DSM, and
the security property. Although a DSM is composed of many
security properties we only show one in this example for a
better visual representation. As we can see in the Figure, this
DSM example defines the domain (STB Domain), some
security properties (Process Isolation, Secure Boot, Kernel
Modules Integrity, etc.), some security solution patterns that
implement the solution of the security properties and some
threats (Code Injection, Denial of Services, etc.) for the
security properties. We explain better a security property in the
example of the secure storage property of the Set-top Box
DSM.

The System Model (SM) describes the target scenario
where we apply the security properties of the DSM in order to
security-enhance it by fulfilling its security requirements. Its
details come from the analysis of the scenario and the expertise
of the system engineer. Using DSMs implies that the system
engineer does not need a high expertise or knowledge of
security, as each security property has all the required
information for its implementation, information of threats and
attacks, tests, V&V methods, etc.

670115

As this process is performed in the modelling phase of the
system, security is naturally integrated. This implies a more
secure system and makes it easier to evolve.

B. Security Building Blocks
In order to provide the solution for a security property (such

as confidentiality), the SBBs use different software and/or
hardware components that interact with each other. The
definition and relation of these relevant components we use a
Security Building Block Metamodel (SBBMM). It provides a
general approach of how to model and relate the different
SBBs and external/internal elements in the system. The
SBBMM defines the grammar and language for the definition
of the Security Building Block Models.

The SBBM consists of instances of the artefacts defined in
the SBBMM and their interactions. The SBBMs can be
composed of several or just one SBB. The solution of a
security property can be defined by using just one SBB or
several ones. This means that a SBBM must include at least
one SBB, which provides a concrete solution for a specific
security property of the use case. The SBB is referenced in a
Security Pattern as one possible solution for a specific security
property.

A SBBM may consist of different SBBs that provide the
same solution but using other components. This way, the
solution could be language-specific (solution in different
programming languages), dependent of the energy
consumption, dependent of the number of devices, etc.

Although the description of the SBBMM is out of the scope
of this paper, we present in Figure 5 a SBBM of the secure
storage property. The description of its elements and relations
are:

� Security Building Block (SBB): The main artefact of
the model. It encapsulates a secure functionality that
implements a security property. The SBB can be single
or composed of various SBBs.

� SBB Interface: Defines the methods that can be used in
the system implementation to interact with the SBB.

� SBB Datacontainer: It defines and encapsulates any
input/output data related with the functionality of the
SBB.

� SBB Precondition: Defines a precondition that must be
satisfied in order to apply successfully the SBB. If the
precondition is not meet the SBB cannot assure that
provides enough level of security or any security at all.
For example, the SBB may require a 512 bits key for
encryption/decryption. If the system does not provide
this element the system will not be secure.

� SBB Postcondition: It provides information of the
security properties or characteristics that the SBB
provides when successfully applied to the System
Model. Following with the previous example, if the
SBB is applied correctly the system will have the
security communications property.

C. Description of the Set-top Box DSM
This Section describes the Set-top Box DSM. First, we

describe the DSM creation process briefly. Following, we
present the security analysis of the domain along with the most
important assets, possible security requirements and
functionalities of the system. Last, we present an in depth
description of the Set-top Box DSM, focusing later in one
specific security property.

Figure 2. Extract of the CSM

671116

Figure 3. Extract of a DSM

1) DSM Creation Process
The DSMs, as explained in Section 2, are completely

independent from the System Models that can be defined in a
domain. This means that the DSM defines the security
properties using as basis the information of the domain and not
the information of a single or several use cases of a domain. A
security domain expert with knowledge and expertise in
security domains models the domain-specific security
properties in the DSM. The security properties are described
(modelled) along with their different characteristics such as its
attributes, threats, attacks, assumptions, etc. using the language
defined in the CSM. We have developed a MagicDraw [5] tool
that can help security domain experts in the creation, definition
and use of the DSMs. It allows also security domain experts to
modify or update a DSM created by another expert.

The first task of the security domain expert is the analysis
of the domain. This analysis provides several results:

� A list of the possible security requirements the systems
working in this domain could have.

� A system threat list.

� A list of domain elements that must be protected.

� A list of real model elements that are typically used in
the domain such as methods (name, parameters),
elements (attributes, type), etc.

� The list of roles that interact with any element or
functionality of the domain.

These results allow the security domain expert to define the
security properties of the domain and all their characteristics

(assumption, threats, attributes, constraints, real model
elements, etc.). This DSM can be enhanced with more security
properties, new or updated elements, etc. by using the feedback
of the users that work with the DSM. In this way, DSMs will
evolve better and faster the more users use it.

Although many security properties can be defined as they
exist (confidentiality, authentication, availability, etc.) we have
defined a term called “composed security property” that allows
us to create complex or domain-specific security properties.
The term composed defines a relation between two or more
security properties that are related in the way “A implies B” or
“A + B implies C”. This way, we can define a complex or
domain-specific security property (secure transmission) and
describe it as been “composed” of the confidentiality and
integrity properties (they have specific attributes and
characteristics in order to provide the required functionality for
the secure transmission property). Following the previous
methodology, we define this relation as “confidentiality +
integrity implies secure transmission”. The main security
property of these relations is the one that defines the solution.
This security property defines several other elements (threats,
assumptions, etc.) and the ones that compose it describe only
its functionality in the composed property. This methodology
has demonstrated to be very effective and potent and has
allowed us to define many domain-specific security properties
that we would not be able to define in other way. We use this
methodology in the description of the security properties of the
Set Top Box DSM.

2) Domain Analysis
The domain analysis presented in this subsection does not

present all the information we obtained of the security threats,

672117

possible requirements and security properties. Due to size
limits we present only some security properties, assets and
functionalities that are valuable for the definition of the DSM.

The analysis of the domain will be used to create and
describe the security properties of the domain. These security
properties are modelled, as we said before, in one DSM
without dependencies of any scenario. The scenario provides
the security requirements while the domain provides the
security properties and its threats, attributes, assumptions, etc.

The description of the domain focuses in five main
functionalities with specific security needs. Following, we
briefly present some of the requirements that emerge from the
domain analysis.

The content broadcasted and received by the STB must be
protected. The CAS is responsible for ensuring the protection
of the incoming communication. The transmitted data and the
control words need to have a secure space to be stored and all
the running processes need to have an isolated memory range
in the STB.

The web browser must be always available and every
transmission must guarantee a secure communication. Besides,
other services that needs to communicate with external
components such as movies functionality (buy, rent, etc.),
select live content to download, application store, etc. must be
protected against malicious users. Last, it must provide parental
control functionality and authentication mechanisms.

Playing DRM content assumes that there exists a valid and
trusted built-in unit in the STB. The signatures must be verified
in the kernel modules before any DRM element can be used.
Besides, the OTT content availability depends on the integrated
STB privileges and features. In the server side, any incoming
connection has to be authenticated. Finally, the communication
and data storage must be protected.

The execution of Third Party applications needs a secure
running environment due to the untrusted nature of any
downloaded software. Every application signature must be
verified before installation and also before any execution.
Finally, the memory space of the running applications must be
separated from the other processes executed in the STB.

Finally, the storage of personal content like photos or
videos must be secured.

This analysis of the domain gives many possible security
requirements, which, as we said before, is used together with
the assets, etc. to generate the list of security properties and
characteristics of each one. We present in the next subsection a
general view of the Set-top Box DSM. It was created using the
information and analysis presented here and following, due to
the size of the DSM, we focus in one particular security
property, secure storage, and describe its components.

D. DSM Description
Following we describe the different security properties

defined in the Set-top Box DSM. Due to size restrictions we
could not show the full diagram in the paper so we present here
the different security properties it has (with their descriptions)
and then we focus in a specific security property (secure

storage) showing its architecture and relations with the
elements that describe it.

The Data Secure Communication property is a composed
property defined by the Communication Integrity property,
Communication Confidentiality property and Communication
Availability propertie. All of them are modelled to ensure that
the transmission of data is made in a secure way. The Data
Secure Communication property has many threats defined such
as Data Theft (attempting to obtain private data or assets from a
user). The communication may suffer different types of attacks,
such as denial of services, spoofing or disturbance in the data
transmission.

The Secure Data Storage property ensures that the data
stored in the STB is protected against unauthorized accesses.
This property is composed of the Data Storage Confidentiality
property, Data Storage Integrity property and Data Storage
Availability property. Among all the possible threats this
property is susceptible of the data destruction threat is the most
important, because it could destroy user sensitive information
and this could have repercussions in the trust of the user in the
system. We explain more in depth this security property in the
next Subsection 3.2.3.

The Secure Boot property is partially showed in the Figure
3. It provides a way to check each stage of the boot process,
preventing any unauthorized or maliciously software to modify
it. One of the most important threats is the Boot Sector data
tampering. It tries to fake the system in order to obtain root
privileges and use them to manipulate the system. Others
threats like the reverse engineering can reveal the boot code
and use it to attack the STB with malware or adding backdoors
to the system. Finally, it’s important to consider other threats
such as the fake verification threat, which tries to verify an
external module of the system as own. Possible assumptions
are the pre-boot authentication, which ensures a signature for
all the necessary files in the boot initialization, and the id
matching verification, which assumes that the encrypted boot
loader identification matches the processor id number.

The Secure Kernel and Kernel Module Integrity (partially
showed in Figure 3) properties check that the kernel of the
system is secured. They contain a signature verification unit
that automatically monitors the kernel module signature path
and extracts the information that each module attempts to load
in the kernel. Each property is focused in different security
aspects and, due to that, they have different threats with
different objectives. The first security property refers only to
the kernel code integrated in the STB and it can be threatened
by undiscovered kernel exploits, which provide to the attacker
the capability to damage the service availability by crashing
single programs or taking control of the system and its
functionalities. On the other side, the Kernel Module Integrity
property can be targeted by the Image Tampering threat. These
threats try to inject code in the root level in order to
compromise the whole system. There are many attacks related
with the tampering threat like the interception, hijacking or
inconsistency, changing the normal course of events defined by
the kernel or just oriented to wastage resource to make the STB
unusable. These kernel threats must be fixed as soon as

673118

possible, so we assume that the kernel is upgradeable and allow
us to make modifications in case of attacks.

The Process Isolation property is showed in Figure 3. It
ensures that the processes are isolated from each other and
cannot modify or interfere with other processes code and/or
data. This property is composed of the Availability of Services
property, the Data and Code Confidentiality property and the
Integrity property. Among the different threats of this property
we have the denial of service threat, which tries to make the
resources of the system unavailable. The code injection threat,
tries to gain unauthorized access in the system. Also, it exists
the data injection threat, focused to serve specific faked
information to the running processes. Both threats are
implemented by many attacks that try to obtain privileges, add
malware to the system or steal sensible information from the
web browser application.

The Secure Shopping property assures the functionality of a
valid trusted store. It checks that the access and payment is
secure and all the information transmitted is confidential. This
property is composed of several properties, they are the Store
Server Authentication property, User Identification property,
Authentication property, Secure Payment property, User Data
Confidentiality property and Integrity property. As this security
property works with external servers its threats are related to
the data transmission or the authentication functionality. For
example, the data theft threat tries to obtain critical information
of the user (e.g. the payment information) and the website
phishing threat describes malicious sites that act as login
servers and can steal the user credentials. There exist many
attacks that implement the previously described threats. This
property assumes that the system uses a SSL certificate that
protects the system against those threats.

The Authorized Access Retrieval and Parental Control
properties ensure that a user is only able to access or download
the content she is allowed to. These security properties are
composed of the User Identification and the Authentication
properties, which check the validity of the user credentials.
These properties define an assumption that trust any
application downloaded from the app-store. There exist various
threats for these security properties such as data theft,
impersonation, etc.

The Application Verification property ensures that every
application installed in the STB is trusted by verifying its
signature each time the STB boots, installs or execute it. This
security property is composed of the application integrity
property and the verification property. One assumption of this
property is that it trust the keys provided by the STB. Therefore
there exist a threat of data theft on every attempt to use the
verification module. Another usual threat is forging signed data
or misuse of the signature if the attacker obtains root privileges
in the STB. Many of the attacks focus in the verification
modules trying to get the signature keys or the complete
algorithm, using for instance a cryptographic attack based on
brute force.

These security properties where defined and modelled
using the expertise of the security domain expert and the
different analysis of the domain. They fulfil all the possible
security requirement of the domain described in Section 2.

Once the DSM is completed it is validated and stored in a
DSM repository where any system engineer will access and use
it in her system model in order to fulfil her security
requirements. The feedback of the system engineers is very
important because they can provide information about
modifications of existing security properties or the necessity of
new ones.

E. Secure Data Storage property
This subsection describes the characteristics and

architecture of the Secure Data Storage property. The rest of
the security properties defined in the DSM follow the same
architecture and specification.

Figure 4 shows an extract of the Secure Data Storage
property. We do not show the Certification or the V&V
elements due to size restrictions. The elements we describe are
the core ones and represent the specification of a security
property.

The domain analysis described in Section 3 shows that the
Secure Data Storage property can be used in several scenarios.
Two of them use the property directly and define the real
model elements where it can be used. The first functionality is
the content broadcast, where the traffic data and the control
words need to be securely stored and the second one is the
secure storage of personal data (e.g. photos, videos, etc.). In a
common STB scenario this property is used in order to secure
several information such as downloaded watermarked content,
paid applications or signature keys.

The Secure Data Storage property has to ensure the
protection of the data containments (e.g. databases, key stores,
etc.) or control the functions that store/access the different
elements (e.g. variables, attributes, etc.). The security property
is composed of the Data Storage Confidentiality, Data Storage
Integrity and Data Storage Availability properties. The
confidentiality property checks that the stored data is accessed
only by the allowed users, the integrity property checks that the
data is not modified by unauthorized users and the availability
property ensures that the data is always available for the users.

Figure 4 shows also some assumptions of the security
property. The first one asserts that the STB was not
manipulated during the manufacturing and the other one
assumes that there exists an encryption hardware module in the
STB. The trust in these characteristics is critical for the
functionality of the security property. If some of them are not
met in the system model where the security property is applied
then the system will not be secure.

The Security Data Storage property defines some threats.
The first one is data modification. Its objective is to modify
user data in the STB. The objective of the malicious user is to
manipulate critical information or spoof user’s identity. It is an
active threat, because malicious users have to actively try to
access the system. The way to achieve this is described in the
attacks elements related to this class. Finally, the impact of this
threat in the system depends on the data that is manipulated. If
it is trivial data then it does not impact the user but if it is
critical data (such as the personal data, app-store data, etc.)
then the impact is very high and can produce serious
consequences.

674119

The second threat is data destruction. Its goal is to destroy
the maximum amount of information from the STB. The
motivations can be various. From disable the STB to make
users lose confidence in the company that sold them the STB.
This threat, as the previous one, is active. The malicious users
have to actively try to access the STB in order to destroy the
data. The impact of this threat is high, as the information
deleted can be critical for the user or disable the STB
completely.

The last threat is the data theft. Its goal is to obtain critical
data of the user. This threat is very important as the malicious
user can be obtaining important info of the user for a long
amount of time before it is detected. The motivation of this
attack is, as we said before, to obtain data from the user, being
a one time specific theft or just access the data for a long
amount of time. It is a passive threat, because once the
malicious software or connection to the system is done, the
hacker will have complete access to the data until the security
flaw is detected. The impact of this threat is high, because the
critical information theft can be used against the user or used
for illegal activities.

Figure 4 shows the attacks that implements the threats
described in the previous paragraphs. The File System Hooking
(manipulating input to file system calls) implements Data
Destruction and Data Modification and the Client Sensitive
Data Sniffing (lifting sensitive data from the client) implements
Data Theft. Each attack has defined an attacker type that is able
to execute the attack.

The File System Hooking attack manipulates inputs to the
target software, which the target software passes to file systems
calls in the system. The goal is to gain access/modify areas of
the file system that the target software did not intend to be

accessible. An assumption of this attack is that programs allow
user controlled variables to be applied directly to the file
system. The attack is active, as the malicious user has to be
directly attacking the system to gain access. The attacker type
element describes the information of the attacker that can
perform this attack. The ability required for the attacker is low,
as they usually use applications that perform this type of attack.
The only information the malicious user needs is to identify the
file system entry point.

The Sensitive Data Sniffing attack examines an available
client application for the presence of sensitive information.
This information may be stored in configuration files,
embedded within the application itself or stored in other ways.
Sensitive information may include long-term keys, passwords,
etc. This attack must be executed directly by the malicious user
because she must obtain a client application for the sniffing.
The attacker needs a medium ability, because she must know
the data structure of the client application. That way, depending
on the attack the attacker needs access to the target user's
installation of the client or an instance of the client.

The security property, as we can see in the Figure, can be
applied in a UML class or operation element. The model
provides also information about the known domain real model
elements usually used in the use cases that work in this domain.
This information will be very useful when the system engineer
uses the DSM containing this security property.

The security solution that implements the security property
defines a solution pattern that links to SBBs. The SBBs
implement the security property by using hardware and/or
software elements. The Security Domain Expert selects the
security solution that fits better the security property and
imports it to the model. The next section presents a description

Figure 4. Secure Data Storage example

675120

of an extract of the SBB Model that implements the security
property.

F. Secure Data Storage SBB Model
The selection of solutions that can implement the Secure

Storage property is supported by the MagicDraw tool
developed in the project. The SecFutur official repository
contains all the SBBs created by developers. Each SBB
includes the implementation, the functional components and
some information about its capabilities. The selection
procedure is out of the scope of this paper but some key
characteristics are: semi-automatic search of SBBs using the
info of the domain, the security property implemented,
resources and energy requirement, etc.; it checks of
compatibility between the selected SBB and the existing ones
of the model; provides information of the implementation, etc.

Figure 5 depicts an example extract of the SBB Model of
the SBB Secure Storage. The model is composed of the
different artifacts described in Section III-B. The operation seal
of the SBB Secure Storage encrypts any kind of given arbitrary
data (plain video data, user data, etc.) and saves it on the device
specified as output in the model. For each encrypted data an
Identifier is returned, which can be used to unseal and thus
retrieve the decrypted original data. The SBB Secure Storage
applies a cryptographic algorithm too, which handles the
encryption and decryption functionality of the input data. For
that reason, the system (device) must provide an encryption
key. The “Internal_Keymanager” component provides the
operation getkey(), which is used by the encryption algorithm
to retrieve the encryption key for both the encryption and
decryption processes. The encrypted data is stored and
retrieved from the device by the “Internal Storage”. The
“Internal Keymanager” and “Internal Storage” component and
operations must be provided by the device.

In order to apply the SBB successfully and thus provide the
”Confidentiality Property” the Confidentiality Precondition
must be valid. It assumes that the cryptographic key received
from the device is also confidential, accessible only by the
“Internal Keymanager” and additionally bound to the specific
device. If this precondition is met and the SBB is applied, the
Confidentiality Postcondition assures that the sealed data is
stored encrypted and can only be decrypted by the device This
means that all data stored on the device by using the SBB
Secure Storage can be considered confidential.

IV. STATE OF THE ART

Although there exist many security engineering processes
that could be used to model the STB domain no one integrates
naturally security since the initial phases of the development.

One basic standard for security engineering is the Systems
Security Engineering Capability Maturity Model (SSE-CMM)
[6]. The model highlights the relationship between security
engineering and systems engineering, regarding the former as
an integral part of the latter and not an end in itself.

Most of the existing approaches are not comprehensive
enough in the sense that they focus either on some special stage
of development, e.g. on design or implementation, which
implies that security is introduced in a latter stage of

development, or on a specific security aspect such as access
control. As each domain can contain many different security
properties (some of them simple and other complex), the
required security engineering process and security artifacts for
the definition of the security characteristics of the domain must
be open and allow users to define the specific attributes,
requirements, etc. of the domain.

UMLSec [7], a standard extension mechanism, introduces
new semantics into UML models and presents a rigorous
secure software engineering approaches tailored for using in
particular designs, those with a powerful tool-suite for security
verification. However, UMLSec only addresses a few specific
security requirements. These characteristics make it not enough
powerful to describe all the security properties and solutions
we have showed in Section 3.

One of the most interesting approaches for introducing
security in the development cycle is Model-Driven Security
(MDS) [8, 9, 10, 11]. This is a specialization of the model
driven architecture approach that suggests a modular approach
combining languages for modelling systems with languages for
modelling security and by using transformations to enforce
security properties from high-level designs to implementation
artefacts [12]. Among the drawbacks in these approaches, we
highlight the need for developers to define new security
modeling languages, which is a difficult task requiring
expertise.

SPACE [13] is a Model-Driven Engineering approach in
which system functionality is specified using collaborative
building blocks. These elements are essentially template-like
patterns. One of the most relevant drawbacks of this approach
is that no guidance is provided in choosing particular security
building blocks. Nevertheless, the most important disadvantage
is that security is integrated after, not during, functional
modeling.

A different way to model the security properties of the
domains is the use of patterns in security engineering. Security
Engineering Process with Patterns (SEPP) [14, 15] is a rigorous
security methodology with a strong focus on the problem
domain and detailed approach for selecting appropriate security
solutions. The development process follows an analysis model
in order to find a solution but it enforces a set of possible
solutions, which implies that some issues such as building an
optimal software architecture is not considered. The
methodology defined by Fernandez et al. [16, 17] relies on
coherent catalogues of security patterns, which can cover a
range of security concerns. However, its main drawback is that
there is a lack of tool-support for pattern selection, implying
that developers must choose then manually and it is hard to
carry out at runtime.

As conclusion, there not exist a security engineering
process that allows us to define and use specific security
properties of domains, due to the number of requirements,
assets, functionalities, etc. and the complexity of the different
security domains, which are composed of complex models and
elements. Besides, the security engineering process presented
here helps system developers in the modeling of the system
integrating security since the beginning of the development
phase.

676121

V. CONCLUSIONS

The creation of a security model with all the possible
security properties (and its characteristics) of a domain is a
very interesting and useful element that greatly facilitates the
work and understanding of the system models related with that
domain. Currently, the process is been applied to several use
cases of different domains, showing good results in each of
them.

The DSM presented here was developed using the
information of the STB domain along with several meetings
with security developers of STBs. They provide us many
security assets, threats, security properties that would be useful
in the use cases of the domain, etc. We have specified a use
case in this domain and have applied the DSM to fulfil its
security requirements. Besides, we are currently developing a
virtual STB using the security-enhanced system model
obtained thanks to this process.

ACKNOWLEDGMENT

This work was partially supported by the E.U. through FP7
project SecFutur (IST- 25668).

REFERENCES

[1] Jon Brodkin. http://www.networkworld.com/news/2007/100407-web-
site-vulnerabilities.html.October 2007.

[2] Design of secure and energy-efficient embedded systems for future
internet applications (SECFUTUR), IST-25668. Seventh Framework
Programme.www.secfutur.eu.

[3] Jose Fran. Ruiz, Rajesh Harjani and Antonio Maña, “A Security-focused
Engineering Process for Systems of Embedded Components”,
SD4RCES’11, Naples.

[4] J. Oberheide and C Miller, “Dissecting the Android Bouncer,”
SummerCon2012, New York, June 2012.

[5] MagicDraw, UML Modelling Tool. NoMagic Inc.
http://www.nomagic.com/products/magicdraw.html

[6] Systems Security Engineering Capability Maturity Model,
http://www.sse-cmm.org/model/ssecmmv2final.pdf

[7] Jurjens, J., “Towards development of secure systems using UMLSec”,
Lecture Notes in Computer Science, 2001

[8] Dimitrakos T, Raptis D, Ritchie B, Stolen K., “Model-based Security
Risk Analysis for Web Applications”, In Proc. Euroweb, 2002

[9] Lodderstedt, T., Basin, D., Doser, J.: “SecureUML: A UML-based mod-
eling language for model-driven security”; In UML 2002 - The Unified
Modeling Language : 5th International Conference, Dresden, Germany,
September 30 - October 4, 2002, Springer-Verlag, (2002), 426-441.

[10] Lang, U., Schreiner, R.: “A Flexible, Model-Driven Security Frame-
work for Distributed Systems”; In Proceedings of the IASTED Interna-
tional Conference on Communication, Network, and Information Secu-
rity (CNIS 2003), New York, USA, (2003).

[11] Basin, D., Doser, J., Lodderstedt, T.: “Model Driven Security”; ACM
Trans. Softw. Eng. Methodol. 15(1), (2006), 39-91.

[12] Fernandez, E.B.: “Security patterns and a methodology to apply them”;
In Spanoudakis, G., Maa, A., Kokolakis, S. (Eds.), Security and Depend-
ability for Ambient Intelligence, Boston, MA: Springer Verlag, (2009),
37-46.

[13] Sánchez, O., Molina, F., García-Molina, J., Toval, A.: “ModelSec: A
Generative Architecture for Model-Driven Security”; J. Univers. Com-
put. Sci. 15(15), (2009), 2957-2980.

[14] Hatebur, D., Heisel, M., Schmidt, H.: “A security engineering process
based on patterns”; In Procs. of the 18th International Workshop on
Database and Expert Systems Applications (DEXA’07), Regensburg,
Germany: IEEE Computer Society, (2007), 734-738.

[15] Hatebur, D., Heisel, M., Schmidt, H.: “A Pattern System for Security
Requirements Engineering”; In Procs of the 2nd International Confer-
ence on Availability, Reliability and Security (ARES’07), Los Alamitos,
CA, USA: IEEE Computer Society, (2007), 356-365.

[16] Fernandez, E.B.: “A methodology for secure software design”; In Pro-
ceedings of the 2004 International Conference on Software Engineering
Research and Practice (SERP’04), (2004), 21-24.

[17] Fernandez, E.B., Sorgente, T., Larrondo-Petrie, M.M.: “A UML-based
Methodology for Secure Systems: The Design Stage”; In Proceedings of
the Third International Workshop on Security in Information Systems
(WOSIS’05), Miami, FL, (2005).

Figure 5. Secure Storage SBB

677122

